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1 Introduction

In classical mathematics, di�erential estimators such that the tangent compu-

tation, the curvature calculus or the area estimation, are clearly de�ned and

their properties are well known but when we want to apply this calculus on

discrete data (2D or 3D discrete images), two di�erent approaches are possi-

ble: we can �rst change the model of the data and put them into the classical

continuous space by using interpolations or parameterizations of mathematical

objects (B-splines, quadratic surfaces) on which the continuous curvature can

be easily computed. Otherwise, we can try to express discrete curvature de�-

nitions and properties, and make sure that these new de�nitions are coherent

with the continuous ones.

In the �rst approach, we have two main problems: the �rst one is that there

exists a great number of parameterization algorithms in which some parameters

have to be set according to the inputs. In order to provide a given accuracy,

we have to reduce the input area and thus to limit our method. The second

problem is that these algorithms have got a prohibitif computational time when

we use large input data such as in medical imaging.

In a discrete approach, we �rst de�ne discrete object such that Digital

Straight Lines and Segments (DSL and DSS for short) or digital planes and

we de�ne discrete version of estimators based on such objects. Just to �x ideas,

Discrete Tangent at a point of a discrete curve can de�ned as the longest DSS

centered on the point.

This research report details several multigrid convergence proofs of discrete

di�erential estimators. Note that this article is not self contained since it doesn't
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go into details about the digital geometry.

2 Multigrid digitization and multigrid conver-

gence

Our studies on multigrid convergence require digitizations of planar Jordan

curves up to a given grid resolution: we assume an orthogonal grid with grid

constant 0 < � � 1 in the Euclidean plane R2 , i.e. � is the uniform spacing

between grid points parallel to one of the coordinate axes. Let r = 1=� be the

grid resolution, and the r-grid Z2
r
has resolution r, de�ned by r-points whose

coordinates are (� � i; � � j), with i; j 2 Z.
Now, we consider a Jordan curve 
 : [0; 1] ! R

2 , bounding a set S. Let

Dr(
) be a r-digitization of 
 in Z2
r
, de�ned by r-grid-intersection digitization,

or by a digital border in Z2
r
. Common models are Gauss digitization (i.e. union

of all r-grid squares with centroid in S), and inner or outer Jordan digitization

(i.e. union of all r-grid squares contained in the interior of S, or having a

non-empty intersection with S). See, e.g., [KY00] for details.

We denote by F(
) 2 R a property of curve 
, which is the length l(
) of 
 in

this article. We denote by E an estimated feature. Assume that E is de�ned for

digitizations Dr(
), for r > 0. The estimated feature E is said to be multigrid

convergent i� E(Dr(
)) converges to F(
), for r !1. More formally:

jE(Dr(
))�F(
)j � �(r)

with limr!1 �(r) = 0. The order O(1=�(r)) denotes the speed of this conver-

gence. Multigrid convergency of estimated features is a standard constraint in

numerical mathematics for discrete versions of `continuous' features.

3 Discrete normal vector �eld in 2D

The discrete tangent on a discrete curve was proposed by Vialard et al. in

[Via96] and based on classical DSS (see �gure 1):

De�nition 1 (discrete tangent) The discrete tangent at a point p of a dis-

crete curve is the longest recognized DSS centered at p

Note that this de�nition holds whatever the discrete curve type: we can

de�ne discrete tangent on 8-curves and also on cellular based boundary, we just

have to consider the appropriated DSS algorithm.

Classical DSS recognition algorithms can be used directly but the tangent

computation at each point of the curve becomes in O(n2). However, we use

an optimization proposed by Feschet et al. [FT99] to compute all tangents in

linear time.

Based on this calculus, we de�ne a discrete normal vector at a point of a

discrete curve:
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Figure 1: An example of a discrete tangent with symmetric DSS tests at a point

of a discrete curve, the gray pixels end the tangent.

De�nition 2 (discrete normal vector) A discrete normal vector at a point

of a discrete curve is de�ned by the orthogonal vector of the discrete tangent

de�ned above.

In the following, we prove that discrete normal vectors are multigrid con-

vergent in direction, for an algorithm almost equivalent to DSS (the di�erence

is discussed later and is necessary in order to prove the third hypothesis of the

following theorem).

Theorem 1 The discrete normal vectors de�ned above are multigrid convergent

in direction.

In the sequel we assume the following:

1. � : [0; 1] ! R
2 denotes the underlying continuous curve whose curvature

is bounded by C = 1
R
.

2. At a point pi of � we de�ne a tube Ti centered in pi of diameter � and

lengths L(Ti) such that � belongs to the tube. The �-enlargement of a

tube is the union of this tube and two parts as described in �gure 2 (for

negative values of �, the notion of enlargement is similarly de�ned).

3. L(Ti) � K

q
�

C
, for any i < N .

This de�nition of centered tubes is geometrical explanation of the discrete

tangent de�nition.

The begin and end of a tube are the intersection of the axis with the lateral

faces (extremities). The pertinence of the last hypothesis is discussed later in the

case of particular discretizations. Moreover, we assume that � is small enough

to avoid pathological cases such as half-turns in a tube ( �
2
< R). The goal is a

bound on the error, linear in �. Notice that the hypothesis (2) implies that �

gets out of the (��)-enlargements of the Ti's through lateral faces.
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Figure 2: Left: �-enlargement of tube T . Middle: schema for proof of lemma 1:

L is the tube length, the dashed line is the tube contour, the solid line is the

(��)-enlargement of the tube. Right: case L large in Lemma 1

Lemma 1 The angle between �1 and the axis of Ti in the (��)-enlargement of

Ti is lower than B = arcsin( �

L��
) + L(Ti)=R. If � such that tan� =

q
�

2R��

veri�es R sin(�) � L(Ti), then the angle is bounded by B = �.

Proof 1 See �gure 2: this is the case of largest negative derivative for a pro-

jection on a plane including the direction of the tube. The following holds:


 � L=R (1)

sin� � �

L��
(2)

This yields the �rst result. The particular case in which R sin(�) � L(Ti) for

tan� �
q

�

2R��
is illustrated in �gure 2-Right; in this case, L is large, and the

derivative must be small enough to keep � in the enlargement of the tube. This

proves that the angle is bounded by arc tan(
q

�

2R��
).ut

The Lemma shows that the maximum angular error between the normal

vector de�ned by the tube and the normal vector of � in T is bounded by

O(
p
�C) under the above assumptions. The error tends to zero when r = 1=�

tends to 1. Hence, we prove the theorem 1.

We now have to study the hypothesis according to which L(Ti) � K
p
Æ=C,

for any i < N .

This hypothesis is true whenever the discretization and polygonalization

verify that any curve which lies in a tube of radius �r with the resolution r

is included in a segment (this can easily be proved by considering the fact

that for bounding curvature C, the minimal length of � before �r-deviation

from the tangent is �(
p

�r

C
)). The classical DSS algorithm does not verify this

property for some pathological cases. It is likely that adding some reasonnable

constraints on the curve could remove this condition. Further details can be

found in [CDRT01].

1This angle is the maximal one between a tangent of � and the tube axis.
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4 Discrete Integration of a Normal Vector Field

Based on this discrete tangent calculus, we can de�ne an algorithm to estimate

the length of the curve.

Let ~n : [0; 1]! E2 denotes the normal vector �eld associated to the Euclidean

curve C. The length of C can be expressed:

l(C) =
Z
C

~n(s)ds (3)

The main idea of tangent based approach is to consider estimated normals

at each point the discrete curve and pixel elements as an estimation of ds.

Hence, we consider a cellular based discrete curve [Kov89]. The Vialard's

algorithm computes the discrete tangent and thus the discrete normal vector

at each 0�cell of the curve. We de�ne the normal vector ~n associated to each

1�cell as the mean value vector of the neighbor 0�cell. We also de�ne an

elementary normal vector nel to a 1�cell as the unit vector orthogonal to the

cell. Hence, the discrete version of eq. 3 is:

lTangInt(Dr(C)) =
X
s2S

~n(s):nel(s) (4)

where '.' denotes the scalar product and S the set of 1�cell of Dr(C). The main

idea of this approach is to compute the contribution of each 1�cell to the global
length by projecting the 1�cell according to the normal vector's direction.

We call this process a discrete integration of a normal vector �eld.

In the following, we prove that the result of the normal �eld integration

converges to the Euclidean measure if the normal vector estimation is multigrid

convergent. We present a more general proof that shows the multigrid con-

vergence of the surface area estimation using same idea: we �rst estimate the

normal vectors at each point of a discrete surface and we estimate the area of

the surface as the discrete integration of a normal vector �eld. The proof of the

length estimator can be easily deduced.

4.1 Surface area estimation

We consider a compact surface S in E3 with continuous derivative. We consider

a digitization function fr which is an application from S 2 Rd to Rd and such

that dfr converges weakly to the identity (i.e. for any continuous function g we

have
R
S
g:dfr(ds) !

R
S
gds ). We also need that dfr and fr are bounded for r

small enough, and f must converge (in the usual sense) to the identity on S.
In other words, fr is a digitization function such that fr(S) converges to

S when r converges to zero. The weak convergence property intuitivly just

means that we can evaluate integrals using the discretization. The interest of

this formalism is that simple remarks using powerfull technical lemmas from

functional analysis yield interesting results.

Notice that this de�nition of a digitization function is not usual, but any

classical digitization schemes such as the Grid Intersect Quantization (GIQ for
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short), Background Boundary Quantization (BBQ for short) or Object Bound-

ary Quantization (OBQ for short) (see [JK97] for a survey on digitization

schemes) lead to the existence of such a function (not uniquely de�ned). This

point will be detailed at the end of this section.

A solution for evaluating a surface in a continuous case consists in usingR
S

�!
n (s)

�!
ds, with �!n (s) the normal to S in s.

The discrete approximation described above consists in using
R
fr(S)

�!
n �(s0)

�!
ds0

(notice that whenever we use an integral notation, this is a �nite sum as all el-

ements are constant on a �nite number of areas in usual digitization), with �!n �
an evaluation of the normal. We only assume that �!n �(s0) converges uniformly

to �!n (s) as d(s; s0)! 0. Precisely:

lim
�!0

sup
d(s;s0)��

j�!n �(s0)��!n (s)j = 0

Notice that the hypothesis can be rewritten as a simple convergence condition, as

we work on continuous function on compact sets. Anyway, usual approximation

results will directly lead to this formula.

The discrete integral is then equal to:

Z
S

�!
n
�(fr(s))dfr(

�!
ds)

And we de�ne:

� = j
Z
S

�!
n
�(fr(s))dfr(

�!
ds)�

Z
S

�!
n (s)

�!
dsj

if r is small enough to ensure that j�!n �(fr(s))��!
n (s)j < �, then (thanks to

the �niteness of dfr)

� = O(�) + j
Z
S

�!
n (s)dfr(

�!
ds)�

Z
S

�!
n (s)

�!
dsj

Thanks to the smoothness of �!n (s) and to the weak convergence of dfr, the

term j:j converges to 0 as r ! 0.

Hence, we obtain the following theorem:

Theorem 2 (Consistence of the discrete evaluation of the surface area in any dimension)

If dfr converges weakly, as the precision increases, to the identity, with fr the

digitization, and if
�!
n 0(fr(s)) converges uniformly to

�!
n (s), then the discrete

integral converges to the surface area and the convergence speed is O(�).

Corollary 1 The surface area estimator based on a discrete integration of a

normal vector �eld is multigrid convergent if and only if the normal vector �eld

is convergent in direction.

We restrict our attention to the case in which there's no self-intersection in

S. Other cases can be treated as well but are not interesting in many cases and

do not lead to an interesting developement of the proof.
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For r suÆciently small (such that there is no "turn back" in the discretiza-

tion), we de�ne f(s) = s0 such that s0 2 s+R�!n (s) and d(s; s0) is minimal. The

existence, uniqueness, continuity, derivability of s0 are clear almost everywhere

except if S0 is orthogonal to S in a neighborhood of s. All the work consists in

proving that this (almost) never occurs. Fortunately, this occurs for �!n (s) 2 E,

with E of measure 0, set of (sic!) normals to normals in discretizations. E has

measure 0 as a �nite union of sets of measure 0 (there are a �nite number of

possible normals in a discretization, hence a �nite number of hyperplanes of

normals to normals of a discretization).

The important point is now that this does not conclude the proof. This

proves that for a given s, the probability of having �!n (s) 2 E is 0; we need this

on any neighbourhood of s 2 S.

Consider now d(s) for s 2 S the dimension of the set of �!n (s00) for s00 in the

neighbourhood of s. d is an integer-valued function, constant except for a set

of measure 0. De�ne Si for i 2 I the di�erent maximal connex subsets of S on

which d is di�erent of the embedding dimension. Necessarily I is countable, as

each Si has a positive measure, and a �nite sum is necessarily countable (easily

derived from the fact that the number of Si of measure larger than a given

t > 0 is necessarily �nite). Hence, the sum (over i 2 I) of the probabilities of�!
n (s) 2 E for s 2 Si (the random variable being the choice of the angles de�ning

the grid) is a countable sum of probabilities equal to 0; hence this probability

is 0.

People who do not like arguments based upon sets of measure 0 can indeed

�nd other proofs, less elegant than the above argument, which according to us

has the advantage of providing such a function f .

The convergence of fr towards the identity being clear, we have to verify the

weak convergence of dfr to the identity. This is indeed a simple consequence

of the fact that fr converges almost everywhere to the identity, thanks to the

classical result stating that the almost sure convergence implies the weak con-

vergence of the derivative. Other proofs based upon the Green-Ostrogradsky

theorem can be provided as well.

4.2 Length estimation

With theorem 1 and corollary 1, we can deduced the theorem:

Theorem 3 The length estimator based on the discrete vector �eld integration

of the discrete normal vector �eld de�ned above is multigrid convergent.

5 Conclusion

In this article, we have presented several multigrid convergent proofs: the �rst

one presents the convergence of a normal vector �eld on 2D discrete curve and

the second one shows that we can integrate a normal vector �eld and obtain

a multigrid convergent estimator under the assumption that the normal vector
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�eld converges. We �nally prove that the length estimation of a 2D discrete

curve with the proposed algorithm converges asymptotically to the Euclidean

length of the underlying continuous curve.
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